Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
2.
Proceedings of 2020 Ieee/Acm International Workshop on Performance, Portability and Productivity in Hpc ; : 36-44, 2020.
Article in English | Web of Science | ID: covidwho-1331716

ABSTRACT

Rapidly changing computer architectures, such as those found at high-performance computing (HPC) facilities, present the need for mini-applications (miniapps) that capture essential algorithms used in large applications to test program performance and portability, aiding transitions to new systems. The COVID-19 pandemic has fueled a flurry of activity in computational drug discovery, including the use of supercomputers and GPU acceleration for massive virtual screens for therapeutics. Recent work targeting COVID-19 at the Oak Ridge Leadership Computing Facility (OLCF) used the GPU-accelerated program AutoDock-GPU to screen billions of compounds on the Summit supercomputer. In this paper we present the development of a new miniapp, miniAutoDock-GPU, that can be used to evaluate the performance and portability of GPU-accelerated prote-inligand docking programs on different computer architectures. These tests are especially relevant as facilities transition from petascale systems and prepare for upcoming exascale systems that will use a variety of GPU vendors. The key calculations, namely, the Lamarckian genetic algorithm combined with a local search using a Solis-Wets based random optimization algorithm, are implemented. We developed versions of the miniapp using several different programming models for GPU acceleration, including a version using the CUDA runtime API for NVIDIA GPUs, and the Kokkos middle-ware API which is facilitated by C++ template libraries. A third version, currently in progress, uses the HIP programming model. These efforts will help facilitate the transition to exascale systems for this important emerging HPC application, as well as its use on a wide range of heterogeneous platforms.

3.
J Chem Inf Model ; 60(12): 5832-5852, 2020 12 28.
Article in English | MEDLINE | ID: covidwho-1065780

ABSTRACT

We present a supercomputer-driven pipeline for in silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. Ensemble docking makes use of MD results by docking compound databases into representative protein binding-site conformations, thus taking into account the dynamic properties of the binding sites. We also describe preliminary results obtained for 24 systems involving eight proteins of the proteome of SARS-CoV-2. The MD involves temperature replica exchange enhanced sampling, making use of massively parallel supercomputing to quickly sample the configurational space of protein drug targets. Using the Summit supercomputer at the Oak Ridge National Laboratory, more than 1 ms of enhanced sampling MD can be generated per day. We have ensemble docked repurposing databases to 10 configurations of each of the 24 SARS-CoV-2 systems using AutoDock Vina. Comparison to experiment demonstrates remarkably high hit rates for the top scoring tranches of compounds identified by our ensemble approach. We also demonstrate that, using Autodock-GPU on Summit, it is possible to perform exhaustive docking of one billion compounds in under 24 h. Finally, we discuss preliminary results and planned improvements to the pipeline, including the use of quantum mechanical (QM), machine learning, and artificial intelligence (AI) methods to cluster MD trajectories and rescore docking poses.


Subject(s)
Antiviral Agents/chemistry , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/chemistry , Artificial Intelligence , Binding Sites , Computer Simulation , Databases, Chemical , Drug Design , Drug Evaluation, Preclinical , Humans , Molecular Docking Simulation , Protein Conformation , Spike Glycoprotein, Coronavirus/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL